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Solutions for certain number-conserving deterministic cellular automata
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We explain the unexpected behavior of the generalizations of cellular automation traffic models introduced
in [H. Fuksand N. Boccara, Int. J. Mod. Phys. &> 1 (1998]. We analyze the steady-state flow7ity,, as a
function of the initial density; we show that these rules correspond to a system with an infinite number of
different kinds of virtual particles interacting according to complex annihilation rules. From simple consider-
ations, we are able to predict the unexpected cutoff of the average flow at unity observed & Baccara.

We present an efficient algorithm for determining the exact final flow from a given finite initial state. An
analysis of this algorithm in the infinite limit using generating functions yields an exact polynomial equation
between the flow and density f&®,, ,, of maximally 2({n+k)th degree in both.
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[. INTRODUCTION erage flow is fully determined by the number of these blocks
in the steady state. In Sec. IV and V, we use this fact to
The class of number-conserving cellular automataobtain simple upper and lower limits for the average flow
(NCASs) has received a great deal of attentjds-6]. In these  and present an efficient algorithm for calculating the steady-
cellular automataCAs), the number(or sum of nonzero state flow from a given finite initial state. In Sec. VI, we
sites remains the same over time, yielding effectively a syseonsider the behavior of the algorithm in the infinite limit
tem of interacting particles moving in a lattice. This is not and derive a steady-state condition yielding an analytical so-
only an appropriate model for many real-life phenomena butution in the case of an infinite space. Finally, in Sec. VII, we
also allows results on particle kinetics to be applied toobtain a nontrivial upper limit for the expected average flow

equivalent CA44]. in a finite space.
The overall behavior of an NCA is described by a flow
diagram, i.e., the flow of the particles as a function of their Il. GENERALIZED TRAFFIC RULES

density. For many NCAs, the flow diagram is piecewise lin- ]
ear [2]. The best-known example is the binary one- The rulesky are defined as follow§7]. A block of cars
dimensional deterministic CA rule number 184, in which (One$ at mostk units long moves right at most units, or to
each particle moves right to the next site if it is empty.  the beginning of the next group. Thug, ; corresponds to
This rule is also known as the “traffic rule” because the fule 184 and rulesty,; and Ry generalize it by either in-
particles can be interpreted as cars moving on a highway. creasing the speed limit or by allowing blocks of consecutive
In Ref.[7], Fuksand Boccara proposed the deterministiccars to move simultaneously. The same rule can also be ex-
rules R, as a generalization of rule 18dule 184 isR, ,). _pressed as foIIow;: at each turn, each maximal matcH@f 1
When eitherm=1 or k=1, the flow diagram is piecewise IS replacedsee Fig. 2
linear, consisting of two pieces with slopesand —k (see
Fig. 1). This pattern was expected to continue for both

m>1 andk>1, but the numerical experiments in RET] wherea=min{kx} and b=min{my}. From this representa-

yielded a surprise. . ; .
Contrary to the physical behavior and other, nondetermintion: the dualism between the motion of the cars under the

istic CA models of traffic[5,8—10, the peak of the flow _rule Rk and_ the.mot?on of the empty sit_es unde_r f'lﬂﬁ,m
diagram is cut off just below flow of one, creating a new " the opposite direction, as mentioned in R@f, is obvi-

phase between the two linear pieces. Faksl Boccard7] ous. . - - . .

were perplexed by the qualitative change produced by their The “physical quantities of interest in systems th@t obey

obvious-looking generalization and were unable to give ar]fhese rules arp, the.densny of ones, anﬂ,.the flow, defined

explanation for this behavior. e}s_p<v>, where(v) is the average velocity qf the cars. For
In this paper, we explain why the dynamics of the modelfinite-length  systems, we writgh for_the time-averaged

produce the unexpected qualitative feature of the flow diaSteady-state flow from a single state afidor the average of

gram and obtain an exact polynomial equation in the infinite> over all states. For infinite-length systengsis the steady-

limit. In the following sections, we first develop a formalism State flow. The equation

based on representing the road as a sequence of hlgicks

1X0Y— 1x7a0b1a0yfb,

tual particle$ rather than single sites. We show that the av- br,, (P)=dr, (1-p) D
expresses one consequence of the dualism discussed above.
*Email address: jvk@iki.fi There are also other quantities such as acceleration, but these
"Email address: lukka@iki.fi are beyond the scope of this paper.
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The dynamics of the class of NCAs with piecewise linearcannot be determined from just the density and so the aver-
flow diagrams is considered [d]. The relaxation to equilib- age flow in the diagram depends on the expectation over
rium is seen as “defects” propagating in opposite directionsdifferent initial configurations. This expectation is not a lin-
on a periodic background and annihilating upon collisionsear function of the density; the flow diagram is curved in the
resembling ballistic annihilatiofiL1]. For rule 184, the back- intermediate phase.
ground is alternating zeros and ones and the defects are de- Below, we show that rul&k,  is equivalent to an inter-
fined as two consecutive zeros or ones. When two defectacting particle system with four indexed types of virtual par-
collide, they annihilate completely into background. Theticles similar to the defects of the above models. The general
steady-state flow is determined by the type and number ofase is considerably more complex th&R, ; because the
the remaining defects. recursion resulting from the nonlinear annihilation rules has

Rule R, ; can be interpreted in a similar way, with the to be taken into account.
sequence 10" *1 a typeA defect forx<0, typeB defect for
x>0, and background fox=0 [4]. The defects may annihi-
late partially, but the final flow is still determined by the
initial balance of the defects only. The flow of cars under rul®&, « is easier to understand if

Surprisingly, it turns out thaR,,, x does not have a piece- the state of the road is considered as a sequence of blocks
wise linear flow diagram fom>1 andk>1 (see Figs. 3 and instead of single cars. As we shall see later, it is practical to
6). This is because the defectsowever definedinteract  distinguish betweeshort, just andlong blocks, comparing
nonlinearly, that is, their effects on the flow cannot be justthe length of a block wittm or k as follows: a block of zeros
summed up, and so the final flow depends on the initial ordeless tharm sites long is a short block, more thamsites long
of the defects in addition to the balance between differents a long block, and exactlgn sites long is a just block. For
types of defects. Because defects of a particular type do ndtlocks of ones, the length is compared wihin a similar
always saturate the system in the middle phase, the final flofashion. We say that a paif@ 0 block aml a 1 block

[ll. FUNDAMENTAL PROPERTIES OF Rpk

road representation symbol representation groups

01001111000000000010000110111101111000001 *_2_11_ 1507 _1 01901 221 520, FIG. 2. A sample time evolution under rule

R3, from an initial state with. =41 into a cyclic
state, expressed in both the road representation
and the symbolic representation introduced in
Sec. V in the text. Periodic boundary conditions
are used.
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TABLE |. The different types of states in the system. As discussed in the text, the existence of
short and long blocks distinguishes the different types of states; just blocks are insignificant.

Lengths po-=0,p9+=0 po->0,p0+>0 po-=0,p0.>0
p1-=0,p,,=0 Cyclic: Intermediate Uncyclic Cyclic: Free flowing
p1->0,,,>0 Uncyclic Uncyclicpg may increase Uncycliggg may increase
p1-=0,p.,>0 Cyclic: Congested Uncycligpg may increase Uncycligpg may increase
is agroup and definepg as the density of these groups. We 0*1Y, (2

also definepy,, po—, and pg— as the densities of long,
short, and just 0 blocks, respectively, and similar symbols fowherex>m andy>k, emits just O blocks leftwards and just

the 1 blocks. 1 blocks rightwards at each time step, reducing to
The states of the system can be divided into nine different vk
categories by the existence of short and long blocks, see o myTE, ©)

Table I. In the following, we will consider the three cyclic . .
types of states separately. To verify that these are the onfgnd increasing the number of groups by one. Therefore,

cyclic states we first show that the following two cases areeventually either the long 0 blocks, the long 1 blocks or both
unstable: long and short blocks of one king,, >0 and will be exhausted, which shows that the initial state is not

p1_>0, and long blocks of both kindg;.>0 andp,,  CYelic. _ _
>0. The other cases follow from the same proofs by duality, | NS completes the study of the uncyclic states, showing

First, we note that new long blocks can never form pe-that from any initial state we will finally end up in one of the

cause a nonlong block of cars moves continually to the righféMaining states shown in Table II. We discuss these three
and, therefore, cannot absorb other cars from the left. ThiSYCliC types of states separately below. _
also implies that a nonlong block can only be absorbed to an !t iS fairly easy to see that if there are only short and just
already long block on the right. The duality proves the samé/0CKS, then the 1 blocks move in the positive direction and
for long O blocks. Furthermore, the length of a long block the 0 blocks move in the negative direction but the number

cannot grow, because long blocks emit just blocks wherea8f blocks and the distribution and relative order of the 0 and
they can onI;/ absorb short or just blocks. 1 blocks among themselves do not change—the state is ob-

To show that the states that have both short and londiously cyclic. To evaluate the flow, we first note that in such
blocks of one type are unstable, consider the sequence state each block of cars travels on each step on average
(1-p)/pg units forwards, which, when multiplied by the

density of cars yields

_p(1-p) B 3

where x<k, y>k, and 0-™ represers a 0 block that is ¢= pe po+=0, p1+=0. (4)
either short or just. On each of tladirst steps, the block*1
absorbs one just block and emits one just block from theAs this class of states does not correspond to either the free-
other end—its length remains unchanged. However, on th#iowing or the congested phase of the simpler traffic rules
(z+1)th step it absorbs a block of lengttand emits a block Rk andR., 1, we term it, for want of a better name, inter-
of length k. Therefore, the number of short blocks has de-mediate.
creased by one, and the length of the long block has de- The free-flowing states where all O blocks are long or just
creased bk—x, possibly transforming it into a just or short and all 1 blocks are short or just are also simple. All the cars
block. Mathematical induction using this argument showsobviously move forwards at maximum speed and conse-
that, if all O blocks are short or just, then during the simula-quently, these states are also cyclic, with
tion, the number of either short or long 1 blocks drops to
zero. The number of groups does not change in this process. ¢=mp, po-=0, py,+=0. 5
An important observation is that the long block behaves like . . )
a decaying quasiparticle that is moving in the opposite direc\PPIYing the dualism between zeros and ones we obtain the
tion from the ones by continuously absorbing short or jusformula
blocks and emitting just blocks. Naturally, applying the du- ) )
alism property proves the same for long and short 0 blocks. TABLE II. The three d'ﬁefe“t types of cyclic states .

Next, we show that if there are both long 1 blocks and®"d the formula for the flow in each.
long O blocks, the state is unstable. We can first apply the

1X(0sm1k)zosm1y,

above property to show that either a long 1 block decays or Description Conditions ¢

it eventually meets a long 0 block moving in the opposite Free flowing p1+=0, po_=0 mp
direction (or else there are no long O blocks left in the sys- |ntermediate p+=0, po,=0 p(1—p)/pg
tem). But when the long blocks meet, they react and annihi- Congested p1-=0, po.=0 k(1-p)

late each other partially or wholly: the group
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¢=k(1=p), po+=0, p1-=0, © @

1.2 T T T T
for the opposite case: congested states with long or just 1 Pt e —
blocks and short or just O blocks. '

We can summarize the above by noting tpadnd the
final pg determine the type of the cyclic state. This is be- /
cause the final average lengths of 0 and 1 blocks can hold fo ™
only one type of a cyclic state: in the intermediate phase
blocks must on the average be short or just whereas in the= °6f
free flowing and congested phases either 0 or 1 blocks mus
be long and the other blocks short or just as shown in Table o4}
[I. Writing these conditions in terms gfandpg allows us to
combine the above evaluations ¢f into one surprisingly o2 |
simple formula.

Proposition 1 The average flow over a cycle in any cyclic
state Omeyk iS 0 02 0.4 0.8 08 1

¢=min{mp,p(1—p)/pc k(1= p)}. ®)

ing proposition. ey

Proposition 2 During evolution of the systenpg can 1 S
never decrease. It can increase only wipgn>0 andpq, /
>0. 08 -

These two propositions give the system its interesting
characteristics: the final flow is completely determined by . ,¢
the final value ofpg, which in turn depends on the intricate
reactions of the long blocks.

As a direct consequence of these propositions, it is
straightforward to obtain crude upper and lower limits under
both finite and infinite lengtlisee Fig. 3.

Proposition 3 The flow of any cyclic statéand thus the

The treatment of long blocks above also yields the follow- 2 ' /\ ' trivial upper

02|

average flow over different staesatisfies ° 02 oa o o5 y
b=min{mp,|p— 1/2|+ 1/2k(1— p)}, (7) ’
FIG. 3. Different limits and the exact solution for the flafvas
d<=min{mp,k(1—p)}, (8 a function of density at infinite length for(a) R, , and(b) R3 .
The trivial limits are given by Eqq7) and(8). Equations(11) and
for any O<p=<1 and any size lattice. (12) yield the tighter limits. The enclosed regions are shown mag-

The lower limit is obtained through considering what is nified in Fig. (6).
the greatest possible number of groups. For a lattice of size
L, this is easily seen to be in the initial random state in order to calculate various sta-
tistics. The bracketf --] represent Iverson’s notatidp. 11
1 1 of Ref.[12]), evaluating to 1 if the enclosed statement is true
Ne, ma=L{5=|P= 5 and to 0 otherwise.
The frequency of groups in the initial, random state is
which together with Proposition 1 yields the first part. Theobviously given by the density of group edges
second inequality follows directly from Proposition 1.
Whenm=1 ork=1, this proposition reduces to the well- PG, intiar= P(01) =p(1—p).
known flow formula

$=min{mp,k(1-p)},

discussed, e.g., in Rdf7].

Proposition 2 tells us that
PG=Pg, initial -

Combining these with Proposition 1 yields the important up-

IV. SIMPLE UPPER AND LOWER LIMITS per limit
AT INFINITE LENGTH

p=<min{mp,1k(1-p)}, (10)

At infinite length, we can use block probabilities ]
which is valid forany R, «, as Fuksand Boccara observed
p(a; a,...a,)=pila=t(1—p)=ilai=ol (99 experimentally in Ref[7]. The expected flow is cut off be-
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cause the initial groups can never combine into feweMe represent the initial state in this notation and then carry
groups, which limits the maximum speed of cars. We shalbut a series of string replacements. The final number of
show in Sec. VII that this limit is also valid for finite-length groups is obtained as the initial number of symbols plus the

systems. _ _ number of extra groups created by the replacements as
This limit does not take into account the dynamics of theshown below.

system but assumes that the final state has the same numberpjamonds react as follows:
of groups as the initial state. It is possible to improve this
upper limit by explicitly including some cases where certain
initial configurations are known to produce new groups. For

adjacent long blocks of zeroes and ones that directly reagjhere the wildcard symbol ? represents the correct symbol
with each other as shown by Eqg) and(3), we have for the new indices from Eq(13) and Ag represents the

<>a,b—>?afm,bfka Ag=+1, (14

x| [y number of new groups created by the reaction.
= 2 min[ E}’ EHp(lOMVO) Stars can be collected, along with zeroes and ones, but
xy=1 zeroes only from the right and ones only from the left. No
new groups are created.

:2 p(omr+11kr+l)
r=0 *a,b¥c,d > *a+c,b+ds Ag:ou (15

_ p(1-p)

C1-pf1-p™ Oab*cd—7a+cb+d, AY=0, (16)

which yields the tighter upper limit *apled— 2atcprd, AQ=0. (17

¢<min{mp,1—pk(1—p)m,k(1—p)}, (11)

when combined with Proposition 1.

A lower limit can be estimated by computing the density
of groups that could arise by having all long blocks split
maximally. For ones, this is

Finally, when a 0 and a 1 meet, it is possible to form new
groups,

Oa,blc,d_’?a+c,b+dv Ag=0. (18)

Note that new groups are not created directly by this reac-

X p(1—p) :
pe=>D < p(020)=>, p(0Lk+1y= T tion, but the result may be &. . _
x>1 r=0 P The above replacements recursively evaluate the reactions

between long blocks. To prove the correctness of a maximal
application of the replacements, we consider the reactions
occurring in an actual simulation. As described in Sec. llI, all
new groups arise from the annihilations of long blocks and
the length of a long block can never grow. Thus, the number
of extra groups is dictated by the sequence of short blocks
that reacting long blocks must absorb before annihilating. In
the following, we shall show that each of the nested annihi-
lations in an actual simulation is correctly represented by the
string replacements.

It is not necessary to carry out the simulation to find the  First, consider a subsequence starting with a long 0 block
steady-state flow. In this section, we presentCiit.) algo-  pjocks between them. Suppose further that the long blocks
rithm for finding the final number of groups from a given 4re |ong enough to actually meet before turning into short of
starting state with periodic boundary conditions in a lattice ofy gt piocks. Then a maximal application of E¢s5)—(18) to
lengthL. This is interesting from two different perspectives: o g hsequence subtracts the total “shortness” of the short
first, it makes it possible to calculate the final flow for long blocks from the long blocks yielding a diamond symbol,

strings more effe_ctlvely. Additionally, it he!ps us to _under- which correctly represents what remains of the long blocks
stand the dynamics of the system and derive analytic results

on the behavior of the system in the next sections. Wwhen they meet. The diamond will then annihilate according
Let us define the symbole, , & 4 p, O, and 1, , all to to Eq.(14) and y|elq the correct numper of extra groups and
correspond to BK1P™ for differenta andb, ’ a symbol representing the_re_malndelther a*,.lf both ang
blocks are completely annihilated; a 0 or 1, if theannihi-
lation is partia). This remainder symbol is exactly what

Combining with the same formula for zeroes yields
d=min{mp, max1—p*,1—(1—p)™,k(1—p)}. (12

Figure 3 shows the accuracy of these limits 103, and
R . For largerm andk, the limits become tighter, converg-
ing to unity geometrically asn andk tend to infinity.

V. EFFICIENT ALGORITHM FOR COMPUTING THE
STEADY-STATE FLOW

would be the result of an actual simulation of the subse-

*ap, as<0 and b=0, guence minus the just blocks that the sequence would have
0,p, a>0 and b=0, emitted from both ends. Because the just blocks do not affect
0atkqbtm= 1 a<0 and b>0 (13 long blocks outside the subsequence, they can be disre-
a,b = ’
' garded.
Oap @>0 and b>0. Suppose then that either long block would decay before

meeting the other long block. Then an application of Egs.
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. Initialize g < 0 and create an empty stack.
. If there are no symbols left in the input string, go to step 6.
. (Input new symbol) Read the next symbol and push it to the stack, and set g + g+1

. (Reaction 1o create new groups) While the top symbol is a O, Le. (@, b) withe > 0

. (Drop reaction result down stack) If the top symbol is a non-0 and the symbol

. Go back to step 1.

. (Finish up by wrapping the stack) If the top symbol is a non-0 and the bottom

. Terminate. The variable ¢ now contains the total number of groups that this string

and b > 0, subtract (m, k) from the symbol, and set ¢ « ¢ + 1.

below it is a 0, pop the two symbols off the stack and push their sum and go to

step 3.

symbol of the stack is a 0, remove the bottom symbol and push it back to the top

of the stack, and continue from step 3.

will have in the steady state.

FIG. 4. This algorithm calculates the final number of groups in
the given symbol string with periodic boundary conditions. The
symbols 3, are represented as paiis,b) and the input string is

read left to right. Addition between pairs is defined as b
+(c,d)=(a+c,b+d). Step 3 corresponds to E(l4) and steps 4 outer reactions can be considered regardless of the order of
and 6 both corresponds to Ed46) and(18) in the text.

PHYSICAL REVIEW E 65026115

These are in fact all the cases that need to be considered,
as the above cases can be applied recursively to the results of
inner annihilations. If neither case applies, we have found the
final number of groups, because either long 0 blocks or long
1 blocks have then been exhausted and so there cannot be
any other reactions in an simulation nor can the replacements
form any new<$’s. On the other hand, each of the applicable
reactions will be carried out at some point of a maximal
application of the replacements, because the 0 and 1 symbols
at the ends or & do not interact with outside symbols. The
replacements may evaluate the decay of the annihilating long
blocks in different order from the actual simulation, but as
the long blocks must absorb all short blocks between them
before they can meet and the short blocks cannot disappear
unless absorbed by a long block, the result is still the same.

Note that the remainder of & may be any none sym-
bol, causing complicated recursion as the result of an anni-
hilation affects further replacements. For example, consider
the replacements

0x0x1%0+11

1 *
0
[ —)

1

where the innermost reactions must be evaluated before the

the possible replacements.
The iteration of Eqs(14)—(18) can be carried out by the

(16)—(18) to the subsequence will at some point turn eitherstack algorithm shown in Fig. 4. Each symbol of the input
the 0 or 1 symbol into & (or the whole sequence can turn string requireO(l) operations to be dealt with in this algo-
into a 0, 1, orx). A long block at one or both ends of the rithm, wherel is the bit length of the symbol. This also
subsequence has thus turned into a just or short block, makacludes the final steps to wrap the stack. Therefore, the run-
ing it possible for outside long blocks to react over the re-ning time of this algorithm is obviousI@(L) for a lattice of
maining just and short blocks of the subsequence. Again, thkengthL.

just blocks that a decaying long block would have emitted The worst-case time for simply running the cellular au-
are disregarded as they do not affect the length or order dbmaton simulation, on the other hand{1$L?) since in this
other long blocks.

system faraway cars do interact with each other. For ex-

time groups  dropped symbols active stack remaining input
0 0 %91 1_1207_1 O1p 1221 9200
1 1 —3,-1 112 071 O 122152500
2 2 *21 U2 Or-1 Oup 12212200 FIG. 5. Evolution of the stack of the algo-
3 3 x_g 1 112|[074 O1p logl 205, rithm in Fig. 4 operating on the sample string in
Fig. 2. In the end, the number of extra groups is
4 4 *_3,-1 112 || 07,1 || 01 132 122021 PR ] L
the same as in Fig. 2. The doubled line signifies
5 3 *-2,-1 1o12 || 071 || Oro [(1-22])] 122 Ogs the end of the input string, after which the stack
5 *_a,1 1o ||0721 |11 1a2 05y is wrapped ovefcf. step 6 of the algorithm in the
Fig. 4). The division to dropped symbols and ac-
5 x g1 1 || ©sa 19 0y 3 . R, S
tive stack is implicit—it is only significant for the
6 *-2-1 Loa 051 Loz Op Markov model analysis of the algorithm in Ap-
6 7 s_a 1 1 121105 1 |[1 22 0s_, pendix A. The boxes depict the “lifetimes” of the
7 . 1 o o substacks started by each input symbol. The time
] e Bt steps of the Markov model are at the bottom lines
8 *—2,-1 112 |21 0,1 of these boxes, where the substacks are finished.
0
7 9 kg1 l_y9 *x_3.1|[021
9 112 *_21||02_1 |k—a,—1
112 *—2-1||*0,-2
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ample, the initial state®"1(1X0™ T~ 2151 (in the road rep- where equality applies at least whém=L—1 and m=L
resentationwould requireT simulation steps to reach a cy- —1.

clic state. Proof. If 0<p<1, the number of different initial states
Figure 5 illustrates an application of the algorithm on anwith a given number of groups can be counted by consider-
example string. ing different ways of placing the group boundaries on the
string. The distribution ofNg for random binary strings can
VI. ANALYTICAL SOLUTIONS AT THE INFINITE LIMIT be simplified to
Infinite limits of systems are often easier to solve than pL=1\((1-p)L—-1
finite system. This is also the case willy, . In the Appen- L |Ng—1 ( Ng—1 ) _
dixes, we examine the behavior of the stack machine algo- NG C if Ng>0
rithm as the length approaches infinity. In Appendix A, we P(Ng)= G ( )
regard the evolution of the stack configurations as a Markov L
process and derive a set of equations for the stationarity of 0 if Ng=O0.

the probabilities of stack configurations. In Appendix B, we o . o
solve these equations to determine the probabilities of differUsing basic binomial coefficient sum formuldsee, e.g.,

ent annihilations and thus the steady-state flow. Ref. [13]) and noting thalNg cannot be zero, the expected
The most important results of the Appendixes are summavalue ofL/Ng is

rized below: 1
Proposition 4 The flow at infinite time for random infinite L _ 2 Nap(N<) = _ L
. . . . . Gp( G) _ L .

strings in the intermediate phaseGs where 1C is the ex- Ne/ W5 p(1-p) p

pected number of groups arising per each input symbol and

is determined by EqsB9)—(B12). The flow depends op ~ From this, the formula in the proposition follows. Finally, the

only through the quantith=(1— p)™p*. equality follows simply from th_e fact that if the condition
For any givenm andk, Egs.(B9)—(B12) for AandC can  9iven holds, no groups can split.

be expanded to a polynomial equation, which is easily seen Note that with reasonable andpL, the reciprocal of the

to be second degree Aand at most 21+ k)th degree irC. ~ binomial coefficient is negligibly small compared to 1.

In the special case oh=k, we can solvep from A in closed

form and obtain the density as a function of flow. In practice VIIl. SIMULATIONS

the degree o€ seems to reduce tm+k+ 1, and we conjec-

ture that this holds for alin andk. For example, in the case

of m=k=2, the equation can be written out as

Simulations were carried out to test the theoretical results.
For small L, complete summations were possible so the
simulated curves are, in fact, exact. For latge number of

16A2+8AC2—36AC3+(1+27A)C*—C5=0. random initial configurations were generated and the evolu-
tion of the system simulated. Since the resulting steady-state

Proposition 5.For any givenm andk, the flowp at infi-  flow under R, whenm>1 andk>1, depends on the
nite time and the density in the intermediate phase can be whole initial state(and not justp, as for whenm=1 or k
related by a polynomial equation maximally of degreen2( =1), the samples so simulated will in general not have the
+K). same flow. Therefore, the standard deviation is displayed

Furthermore, the phase transitions occur wh@€r@s a  along with the average of the resulting flows, giving an idea
function of p crossesmp or k(1—p), the flow of free flow- of the strength of the fluctuations. Astends to infinity, the
ing and congested phases. For example, wherk=2 the  fluctuations slowly average out, displaying the usua/L1/
phase transitions can be solved to be exactly at behavior for the standard deviation.

Figure 6 depicts the simulated flow and exact solution for
= E+E(2‘/§_ 5) infinite space. The theoretical solution agrees well with
P=277 2/ simulated results. Figure 7 shows the simulated flow and
upper and lower limits for finite space. For, k=L —1 the

VII. UPPER LIMIT FOR STEADY-STATE FLOW upper limit is exact as confirmed by the simulation.

IN FINITE SYSTEMS

. . . . . IX. CONCLUSIONS
Carrying out calculations for finite systems is consider-

ably more difficult, since the probabilities are no longer in-  In this paper, we have solved the behavior of the general-
dependent of each other. However, the following interestingzed traffic rulesk,  for infinite lengths of road and uni-
limit can be derived. form random initial conditions.

Proposition 6 The average flow in steady states starting We have derived an efficient algorithm for computing the
from random binary strings of length with 0<p<1 satis- average flow from an initial state under the generalized traf-
fies fic rulesRp, . The idea behind the algorithm is an appropri-

. ate representation of the road as a string dfYblocks in-
m 1_( L ) K(1—p) stead of single sites. Finding the average flow can be reduced
P2 pl) P’ to finding the number of these blocks in the cyclic state.

$d=<min
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FIG. 6. Infinite-space behavior
of flow as a function of density
under(a) R, and(b) R3,. Aver-
age of 100 simulations with.
=10 000, theoretical flow, and up-
per and lower limits given by Egs.

1 (11) and(12).

(@) (b)
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The algorithm works by decoupling the time from the
simulation and considering directly the different reactions
that would occur during the evolution of the system. Analy-
sis of the algorithm in the infinite limit yields an exact solu-
tion for the flow in an infinite space. Simulated results agree
perfectly with the analytic solution.

Finite-space behavior is more complex because single
sites are no longer independent. We have, however, been ab
to obtain for the average flow a nontrivial upper limit, which .
is exact form, k=L —1.
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APPENDIX A: STEADY-STATE CONDITIONS FOR THE ®
STACK MACHINE AT THE INFINITE LIMIT )

Consider the symbols and reactions defined above in Sec
V. All new groups are created from the diamonds, which in
turn can only arise whea 0 symbol is combined with a
following 1 symbol. The algorithm in Fig. 5 uses this fact to
find the final number of groups by only tracking the reactions
of 0 symbols. It scans through the input string linearly, from
left to right, maintaining a stack of the processed symbols
with all reactions of 0’s and> ’s carried out. This means that
all the remaining 0 symbols end up on top, which we shall
now call theactive partof the stack. When a non-0 input
symbol consumes all the 0's we say that the symbol is
dropped off from the bottom of the active stack into the
inactive part as the symbol can no longer create new groups
with the following symbols.

In finite systems with periodic boundary conditions, the
processing of the input string is divided into two parts. First,

14

13

12

0.9

08

07

=4

6

05

14

13

141

05

07 08
T T T . . . i
flow —— |
upper limit ——
trivial lower limit -—----—
flow with L=ee --------- i
: 1
1 7 o
T T r . : .
flow ——i i
upper limit ——
trivial lower limit —
flow with L=co --------- i
L L "l N )
1 2 3 4 5 5 7 a

pL

FIG. 7. Finite-space behavior of the average fl¢was a func-

the input string is scanned as above. When all of the inpufion of density undera) R, and (b) R, ; whenL=8. All points

has been read, the inactive part of the stack, comprising Ggpresent either evaluated formulas or averages calculated over all

I's andx’s, is reprocessed with the zeroes in the active partconfigurations. The trivial lower limit is given by E6). The upper
since the 1's on the bottom of the stack may react with thaimit given by Proposition 6 is exact fom, k=L—1 as demon-
0’s on top, producing new groups. The relative effect of thisstrated by(b).
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wrapping diminishes as the length approaches infinity: it issach time step is still the same as the expected per symbol
easily shown that we can ignore all symbols dropped to thelensity.
inactive part in the infinite limit. For simplicity, we consider the input symbol distribution

To obtain the limiting flow, we thus need to evaluate thepi(?x,) to represent what remains of the symbol after initial
average number of new groups produced as the stack a|gfﬁaCti0nS of& symbols. This difference is only conceptual
rithm processes a hew Symb0|_ When new Symbo|s are inpuﬁs the algorithm would |mmed|at8|y carry out the initial re-
the active stack can either grow infinitely or remain finite. If actions for each input symbol anyway. It is easy to see that
the active stack remains finite, the probabilities of differentth® resulting distribution must still be geometric; only a con-
active stacks will eventually reach a stationary distribution.Stant is required to normalize the lack of's. The normal-
Once the stationary distribution is known, it is straightfor-12€d input distribution is defined for indices in the set
ward to calculate the expected number of new groups for a
random input symbol. D:={(x,y):x>—m, y>—k, [x>0][y>0]=0}

If, on the other hand, there are not enough 1's aisdto
annihilate the 0’'s and the stack grows infinitely, we can usegyg
the dualism property and consider the thus finite stack of 1's
instead of 0’s. It turns out later that we do not even have to A(1— p)<pY
consider this dualism explicitly, as the symmetry of the equa- Di(P0)i== u, (A1)
tions is restored in Appendix B. Y 1-A

Formally, we regard the evolution of the active stack as a
Markov process. The Markov property is satisfied as the nexivhere we define the symbdl to represent the quantity
state depends only on the current state and the upcoming
independently distributed random symbol. Clearly, the pro- As=(1— p)Mpk

: : . =(1-p)"p", (A2)

cess can reach each possible stack configuration from every
state and has a positive probability to remain in its current ] . o
state (the symbol*g ). Furthermore, given that the active which occurs often in the formulas below. This quantity is
stack will not grow infinitely, the process will return to every the initial probability of a¢, and the initial reactions pro-
state an infinite number of times with probability one. This duce & density oA/(1—A) new groups(cf. Sec. I\). Here

means that the Markov chain is irreducible, aperiodic andemd in the following, we use densities relative to the initial

Harris recurrent and therefore will converge to a unique sta-symbOI density 1 in the string of symbols.

. S i~ In our model the initial stack distribution is defined by
Flosr};:lry distribution(see, e.g.[14] or Proposition 6.3 of Ref. b(-[t=0):=p;(-) corresponding to the distribution of stacks

An essential property is that the algorithm can be applie({hat results from running the algorithm on random input until

independent of the lower levels for each stacked symbol untisibisfigsékr;gr;i'r(])isi)gggolz;s ‘;aCkEd in, i.e., the first time a
that substack is finished, that is, until the lowest level of the h ition f -9 .b | distributi h
substack turns imta 1 or ax, which happens either imme- . T. N 'gran3|t|on fom a symbo istributiop(-|) tq the
diately, if the stacked symbol is alread 1 or ax, or when distribution p(- [t+1) on next time step can be defined by
’ ’ considering the possible ways for a given symbol to arise on

a 1or a(’ on a higher level falls.to the bottom level CONSUM- o ch level of the stack: A symbol can be the result of a 0 and
ing all 0’'s on the substack. This allows us to consider each

level of the active stack as the bottom of an identically dis-2 ”OT"O a_bove It reacting as per E(,q)gﬁ) "?‘”d (18). 'I_'he

tributed substack. The distribution is particularly interestingre"’wt'on will result in a none symbol %, with probability

when a substack is just finished. At these times the active

stack consists of zeroes at the bottom of each substack and of

the 1 orx that finishes the topmost substaslee Fig. 5. pc(?x,ylt):a<x§;;1$0 bz,o P(Ox—a,blt)P(?ay—b|t).
Suppose(?, ) is the distribution of symbols seen on the

bottom level of the active stack at each time a substack is L. .
finished. Then, if the symbol is a 0, the same distribution of!f’ on the other hand, the result of the reaction is a diamond,

symbols will be seen on the bottom of the substack abovd Will further react, possibly several times, according to Eq.
that symbol. Thus, a symbol distribution defines a distribu{14) and yield %, , where §,y) € D, with probability

tion for stack configurations. Note that an arbitrary stack

distribution cannot be represented by such a symbol distri-

bution but it is required that the stack symbols are identically Pa(?xy[t)= 2 2 > POk armbl)P(Lay-brklt).

and independently distributed and that the height of the stack F=1a=0b=0

is implied by the stack symbols as described above. Further-

more, even though each input symbol starts a substack do case there is another 0 on top of a,0 no reactions will
that there are the same number of time steps as there apecur and the Q, remains for the next time step. Finally, if
input symbols, the substacks are finished out-of-synch wittthe symbol is not a 0, it falls off from the bottom of the
the time steps of the algorithm. This complication, howeversubstack and is replaced by a fresh symbol from the input
is inconsequential as the expected density of new groups atistribution. Thus, the transition function can be written as
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Lo [ & |
short just Jong _ FIG. 8. The po_ssible index combinations for
—m 1-m 2-m ’ 0 1 2 different symbols in the Markov model for the
algorithm discussed in Appendix A. By consider-
1o NG ox ' M Nt a g ing the possible outcomes of combined 0 and
O RO R et AINNTR RS non-0 symbols, it can be seen that the parenthe-
short  —k| - (komk) | (Fiompk) | *oomyk 00t Kok 01,k Oz, v ized bol Th dE
1 BN N e B e B e 2 K X 36 O E O O®: sized symbols cannot occur. The s@san :
- \ ¥ Y > % ¢ J, 6 defined in Appendix A are depicted by the differ-
.7(; 0’ § ent shadings. The marked sequences are repre-
L RN £, 2 NG SV ANAVANG. Y, L0 20 sented by the generating functioRs_(z) and
(Lom) L rem Lacma oo Lo (O11) (O22) - F,(2) discussed in Appendix B.
long 2( e (Aemy) ) S Tosmp N\“ s T2 (C12) (Ca2) -+

p(?, y|t+ 1)=[(x,y) e D]pq(?y y|t)+[(x,y) e E]pe(?y ylt) For a more rigorous proof, it is easy to check that the initial
' ’ ' distributionp;(-) has these properties and that the transition

+[x>0]p(?,,[t)p(0]t) function maintains the properties. Thus, the limiting station-
ary distribution must also have the properties.
+ (L= p(O[t)Pi(Pxy)- (A3) The stationarity recurrence given by E¢83) and (A4)

. can be transformed to
wherep(0|t) denotes the total probability of 0 symbols and

the setE is defined as the complement of diamonds, {1-[x>0]p(0)}p(?x,y)
[1-p(0)](1—-p)*p¥

_ [(xy)eDIpa(?xy) | [(X,y) €EIpe(?xy)

E={(x,y):[x>0][y>0]=0}.

Note that the transition function does not define a Markov ~~ [1—p(0)](1—p)*p¥ * [1-p(0)](1—p)*pY

chain for symbols but it implicitly defines a linear Markov

operator for the subspace of stack distributions that are de- Pi(%xy) (A6)
termined by symbol distributions. (1—p)*pY

The stack distribution defined by a symbol distribution is

stationary when For clarity, we definé, , as the left side of the equation,

? =p(? fyy=(1—p)~* -y171x>01p(0) ? A7
p(-x,y|t+l)_p(-x,y|t)- (A4) x,y'—( p)'p 1-p(0) p(xy) (A7)

Thus, we need to find a symbol distributig{?, ;) corre-  This transformation op(-) cancels out the geometric factors
sponding to the unique stationary stack distribution. Theand will decouple the recursivp(0) coefficient from the
symbol distribution can then be used to determine probabilistationarity equation. The transformation is reversible as

ties for different reactions. p(0) can be obtained in terms 6f , from

Figure 8 represents the possible indices for different stack
symbols. It is easy to see why some symbols cannot occur at p(0)= > p(0, J)= > (1-p)*p¥f, . (A8)
all, but even more can be said. The distribution of the stack x>0y 7 x>0y '

symbols retains some of the geometric properties of the inp

distribution. The distribution of 0 symbols is geometric in itsLUvIth this definition, the geometric properties reduce to

x index and the distribution of 1 symbols is geometric in its fry=Ffx1, xs<0, y>0,
y index.[The distribution of 2 , is in fact geometric iry for
all (x,y) e D.] This can be justified by noting that two such fxy=f1y, x>0, y<O. (A9)

symbols result from the same set of paths of the process Wlt{he define analogously the componers, andc,, corre-
. . . : Xy

the corresponding difference only i or y index of one sponding to terms on the right side of E&6) and apply the

specific input symbolfor O's the initial O starting the sub-  jefinition off, . and the above properties,

stack and for 1's, the final 1 that falls through to the bottom i

of the sub-stack These properties are listed below:

P(?%y)=0, Xxs=—-m,

p(<o X,y)=0, x>0,y>0, r=1 as<0 b<0
. A
p(ox,y):(l_p)x 1p(01,y)1 X>O=y$07 (AS) :maSO b<0 flybfa,lu
P(1cy)=p'"'P(151), x=<0y>0. for (x,y) e D, and
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o _oPc(Py) that is positive at an infinite distance in both directions. Here,
Cyy:=(1—p) %p yl—p(b) however, we know that both,(z) and F,_(z) are
uniquely defined generating functions, because wkerl

—m, the termf, , is only positive at an infinite distance in
:azo b;o fx—a,bfa,y—b:go ) fipfay-b the positivey direction and whex=1, it is only positive at
an infinite distance in the negatiwedirection (see Fig. 8.
for (x,y) e E. The stationarity condition given in EGA6) The coefficients for the functions for otherare positive

can then be expanded as infinitely in both the positive and negatiwe direction but
they are only used in the following calculations for formal
fry=[(x,y)eD]ldy,+[(x,y)eE]cy, multiplication and addition operations corresponding to well-
1= ) *p V(2 defined convolution and sum operations on sequences.
F(1=p) TP 7pi(Pcy) The termf,, given by Eq.(A10) vanishes fox< —m.
A Thus, we can represent it by the first nonzero chse,
=[(x,y) e D]mz Eb: fipfas =[y=1—-k]JA/C, and the differences
1-C
Y €E]l X D fipfay b fx,y_fx—l,y:[xgl]% fipfx-1y-p=[x=1lly=>0]—=—,
a<x;as0 b
(B2)
A
+[(x,y)eD] 1A for x>1—m. With the generating function notation we have

Fi-m(2)=(A/C)Z* ¥/(1-2) and
where we have left out the summation limits for zero terms,

1-C[x=1
based orf, ,=0 for a>0 andb>0. F2)—F, 1(2)=F1(2)F_1(2) — —— [x ]Z,
Noting that only the middle line really dependsandy c 1-z
and thatf , ,=0 for a<—m, the recurrence can be written as
' for 1—-m<x<1. Thus,
A
foy=lxy)eDlg+ 2 X fipfay 1-C[x=1]z
v C aciEeo B 0 (D =[Fi(@) 1M1, (2) oo e,
C 1-z
(B3)

1-A
_[X>O][y>0]<T_ 1) , (A10)
for —m<x=1. Thus, if we can solv&,(z) andC, we have
where we define determinedr,(z) for all x, becauseC determined; _ ,(2).
For x=1, Eq.(B3) can be written as
A 1-A
Ci= = , (A11) SAZTR z-C
1-m1l é Eb fl,bfa,1+1 [Fl(z)+1]:[Fl(Z)+1] C(l_z) C(l_z)v (84)

which is anmth degree equation with respect fo=F(2)

for reasons to become clear later. . -
+1. Itis easy to see that there are at most two positive real

We have thus reduced the stationarity of the stack distri :
bution given by Eqs(A3) and(A4) to the above convolution Solutions fors.

equation, wherd, , determinesp(?,,) and is given by Eq. Because we can solve,(2) givenC, the complete solu-
(A7). tion for the stationary distribution of the stack configurations

and therebyp now hinges on determininG. Unfortunately,
the quantityC cannot be solved directly from the above
equations, since its definition is already used in solving
them; equations relatin@€ and F,(z) reduce to identities
when combined with Eq(B4).

The convolution recurrence in EQA10), which is the However, there is a different, strange approach: we can
stationarity condition for the stack distributions, can bedetermineC from the requirement thaf(z) must (indi-
solved using generating functiofsf. [13]). We define a for-  rectly) represent a probability distribution. The corrégi(z)
mal generating functiofr,(z) for the sequencé,, by must obviously be analytic for some regif@>r. Addition-
ally, it must be positive and decreasingznbecause it has
nonzero coefficients only for nonpositive exponentg,a&nd
all coefficients must be non-negative since they are prob-
abilities multiplied by a positive function of the index. These
This generating function is not quite ordinary: the sum goegwo constraints allow us to uniquely determi@en the fol-
over ally, positive and negative. In general the values of alowing.
generating function do not uniquely determine a sequence Equation(B4) can be solved with respect © as

APPENDIX B: EXACT SOLUTION FOR THE STEADY-
STATE FLOW THROUGH GENERATING
FUNCTIONS

Fu(2)=2 f,,2. (B1)
y
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FIG. 9. Plots of the real solutions8
=F,(1l/a)+1 of the generating function equa-
tion (B6) atp=1/2 for C below, at, and above the
correctg for (a) R, and(b) R3,. Because3 is
an ordinary generating function for a sequence of
positive values, the correct solution and all its
derivatives must be positive. Furthermore, be-
causea= 1/p corresponds to a sum of probabili-
ties, 8 must converge at least foa|<1/p. This
excludes too large values &f For too small val-
ues, the lower curve continues below 1 yielding
negative probabilities and the upper curve is not
feasible either, because it is decreasing at
a=1/p. Only the singular curve at the correCt

yields an admissible solution. Because Hg6)
is symmetric with respect toa(k) and (8,m),
the solutions have symmetry axis=p3 when
m=Kk.

e b 4 o
T T T T
G M 4 o
T T T

e b 4 o
T T T T

Now, we only need to reducefrom this system and then we
have an equation relating the unkno@nto the parameters
A, m, andk. By eliminating the left sides we obtain from the
right sides eithera=1/(k+m) corresponding to a pole of
Eq. (B6) or

_ BTAZ -7
“aar .

[note thatB=F,(z) +1 depends omz]. Substitutinga:=1/z
in this equation yields a perfectly symmetric form

_ Adkpm-1

c= C[l-a(k+m—1)]=(1—ak)(1—am).
aB—a—pB’

(B6) (B8)

This is a second degree equation fand its smaller solu-

Figure 9 depicts the solutions of E@6) with different val- tion |
ion is

ues ofC for R, ,andR3,. The figures are essentially similar
for largerm andk with at most two positive solutions and in
addition one everywhere negative solutionnifis odd. In
either case, it can be seen that a too large valué dsults
to a gap in the solution and a too small value results to either
a nonmonotonous or a honpositive solution. Only the correct
C allows changing branches in the singularity point to obtain, hare we define
a feasible solution. This is analogous to the singular behavior
of elliptic curves(cf. [16]).

Because the surfaceC(a,B) is smooth, the two
constant€ contours can only cross at a critical point. The

critical pointsVC(«,8) =0 are determined by the equations
Note that the other solution with-c in Eq. (B9) does not

yield a critical point.
Now Eg.(B8) can be used to rewrite the first equation of
Eq. (B7) as

Multiplying by («—1) and—(8—1) and adding, the equa-

1+(1-C)(k+m—1)—c
a:

2km ’ (B9)

c:=\[1+(1-C)(k+ m—1)]>—4(1—-C)km. (B10)

Aka* 1B af—a—pB)— (Aa*Bm-1)(B-1)=0,
Ama* 8™ Y(aB—a—B)— (Aa*BM™—1)(a—1)=0.

tions yield k(a—1)B=m(B—1)a. Changing variables to _ _ k=171 _ Al ym—1
a=(a—1)/(ma) andb=(B—1)/(kB) yields a simple form A=Ca(l-am™(1-ak) (B1D)
a=b for the equation. Substituting=1/(1—am) and B
=1/(1—-ak) to the critical point equations and to E@B6) =Cka[1—a(k+m—1)]* L(1—ak) ™k (B12)
results in

a yielding A as a function ofC in closed form with the solution
A(l—am)fk(l—ak)fm=m, of a given by Eq.(B9).

Now that we have determined all variables, we can deter-
1-a(k+m) mine probabilities for different reactions. The density of new

A(l—am) ¥(1-ak) "M™=1-C (B7)

(1—ak)(l—am)’ groups on the bottom level of the active stack is
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1 1

= r 0,_ Loy 1+ + 24oy)=om——

Pag= 2 212 2 POcarmo)P(Tay-ben) Pag(L+P(0)+p(0)*+ )= 5= 1%

_ Adding in the initial density 1 and the density of groups

_[1_p(0)](x,y2)eD ,; rA’a‘bESO (=P fipfas arising from the initial reactions yields the final group den-
sity relative to the initial group density:

1-A(1-A
_[l p(o)](l_A)Z A ( C ) Pc =1+ A +(£_L>:_
p(1—>p) 1-A |C 1-A) C°
When all levels of the stack are taken into account, the total
density of new groups is Thus, in the intermediate phas¢=C.
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