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Solutions for certain number-conserving deterministic cellular automata
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We explain the unexpected behavior of the generalizations of cellular automation traffic models introduced
in @H. Fukśand N. Boccara, Int. J. Mod. Phys. C9, 1 ~1998!#. We analyze the steady-state flow inRm,k as a
function of the initial density; we show that these rules correspond to a system with an infinite number of
different kinds of virtual particles interacting according to complex annihilation rules. From simple consider-
ations, we are able to predict the unexpected cutoff of the average flow at unity observed by Fuks´ and Boccara.
We present an efficient algorithm for determining the exact final flow from a given finite initial state. An
analysis of this algorithm in the infinite limit using generating functions yields an exact polynomial equation
between the flow and density forRm,k , of maximally 2(m1k)th degree in both.
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I. INTRODUCTION

The class of number-conserving cellular autom
~NCAs! has received a great deal of attention@1–6#. In these
cellular automata~CAs!, the number~or sum! of nonzero
sites remains the same over time, yielding effectively a s
tem of interacting particles moving in a lattice. This is n
only an appropriate model for many real-life phenomena
also allows results on particle kinetics to be applied
equivalent CAs@4#.

The overall behavior of an NCA is described by a flo
diagram, i.e., the flow of the particles as a function of th
density. For many NCAs, the flow diagram is piecewise l
ear @2#. The best-known example is the binary on
dimensional deterministic CA rule number 184, in whi
each particle moves right to the next site if it is empty@1#.
This rule is also known as the ‘‘traffic rule’’ because th
particles can be interpreted as cars moving on a highwa

In Ref. @7#, Fukśand Boccara proposed the determinis
rulesRm,k as a generalization of rule 184~rule 184 isR1,1!.
When eitherm51 or k51, the flow diagram is piecewis
linear, consisting of two pieces with slopesm and 2k ~see
Fig. 1!. This pattern was expected to continue for bo
m.1 andk.1, but the numerical experiments in Ref.@7#
yielded a surprise.

Contrary to the physical behavior and other, nondeterm
istic CA models of traffic@5,8–10#, the peak of the flow
diagram is cut off just below flow of one, creating a ne
phase between the two linear pieces. Fuks´ and Boccara@7#
were perplexed by the qualitative change produced by t
obvious-looking generalization and were unable to give
explanation for this behavior.

In this paper, we explain why the dynamics of the mod
produce the unexpected qualitative feature of the flow d
gram and obtain an exact polynomial equation in the infin
limit. In the following sections, we first develop a formalis
based on representing the road as a sequence of blocks~vir-
tual particles! rather than single sites. We show that the a
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erage flow is fully determined by the number of these bloc
in the steady state. In Sec. IV and V, we use this fact
obtain simple upper and lower limits for the average flo
and present an efficient algorithm for calculating the stea
state flow from a given finite initial state. In Sec. VI, w
consider the behavior of the algorithm in the infinite lim
and derive a steady-state condition yielding an analytical
lution in the case of an infinite space. Finally, in Sec. VII, w
obtain a nontrivial upper limit for the expected average flo
in a finite space.

II. GENERALIZED TRAFFIC RULES

The rulesRm,k are defined as follows@7#. A block of cars
~ones! at mostk units long moves right at mostm units, or to
the beginning of the next group. Thus,R1,1 corresponds to
rule 184 and rulesRm,1 andR1,k generalize it by either in-
creasing the speed limit or by allowing blocks of consecut
cars to move simultaneously. The same rule can also be
pressed as follows: at each turn, each maximal match of 1x0y

is replaced~see Fig. 2!

1x0y→1x2a0b1a0y2b,

wherea5min$k,x% and b5min$m,y%. From this representa
tion, the dualism between the motion of the cars under
rule Rm,k and the motion of the empty sites under ruleRk,m
in the opposite direction, as mentioned in Ref.@7#, is obvi-
ous.

The ‘‘physical’’ quantities of interest in systems that ob
these rules arer, the density of ones, andf, the flow, defined
as r^v&, where^v& is the average velocity of the cars. Fo
finite-length systems, we writef for the time-averaged
steady-state flow from a single state andf̄ for the average of
f over all states. For infinite-length systems,f is the steady-
state flow. The equation

f̄Rm,k
~r!5f̄Rk,m

~12r! ~1!

expresses one consequence of the dualism discussed a
There are also other quantities such as acceleration, but t
are beyond the scope of this paper.
©2002 The American Physical Society15-1
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FIG. 1. Average flow over random initial con
figurations as a function of the density of carsr
under the ruleRm,k for m,kP$1,2,3%. The aver-
age flow never exceeds one regardless of the c
straintsm andk. Note that the diagram for rules
Rm,k and Rk,m is symmetrical as shown by Eq
~1!. R1,1 corresponds to rule 184. Each point
obtained as an average of 100 simulations on
lattice of sizeL51000.
a

n
n

-

ec
he
r

e

-
e

-

us
d
en
n

flo

ver-
ver

n-
he

r-
eral

as

f
ocks
l to

r

The dynamics of the class of NCAs with piecewise line
flow diagrams is considered in@4#. The relaxation to equilib-
rium is seen as ‘‘defects’’ propagating in opposite directio
on a periodic background and annihilating upon collisio
resembling ballistic annihilation@11#. For rule 184, the back
ground is alternating zeros and ones and the defects are
fined as two consecutive zeros or ones. When two def
collide, they annihilate completely into background. T
steady-state flow is determined by the type and numbe
the remaining defects.

Rule Rm,1 can be interpreted in a similar way, with th
sequence 10m1x1 a typeA defect forx,0, typeB defect for
x.0, and background forx50 @4#. The defects may annihi
late partially, but the final flow is still determined by th
initial balance of the defects only.

Surprisingly, it turns out thatRm,k does not have a piece
wise linear flow diagram form.1 andk.1 ~see Figs. 3 and
6!. This is because the defects~however defined! interact
nonlinearly, that is, their effects on the flow cannot be j
summed up, and so the final flow depends on the initial or
of the defects in addition to the balance between differ
types of defects. Because defects of a particular type do
always saturate the system in the middle phase, the final
02611
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cannot be determined from just the density and so the a
age flow in the diagram depends on the expectation o
different initial configurations. This expectation is not a li
ear function of the density; the flow diagram is curved in t
intermediate phase.

Below, we show that ruleRm,k is equivalent to an inter-
acting particle system with four indexed types of virtual pa
ticles similar to the defects of the above models. The gen
case is considerably more complex thanRm,1 because the
recursion resulting from the nonlinear annihilation rules h
to be taken into account.

III. FUNDAMENTAL PROPERTIES OF Rm,k

The flow of cars under ruleRm,k is easier to understand i
the state of the road is considered as a sequence of bl
instead of single cars. As we shall see later, it is practica
distinguish betweenshort, just, and long blocks, comparing
the length of a block withm or k as follows: a block of zeros
less thanm sites long is a short block, more thanm sites long
is a long block, and exactlym sites long is a just block. Fo
blocks of ones, the length is compared withk in a similar
fashion. We say that a pair of a 0 block and a 1 block
e

tion
in
s

FIG. 2. A sample time evolution under rul
R3,2 from an initial state withL541 into a cyclic
state, expressed in both the road representa
and the symbolic representation introduced
Sec. V in the text. Periodic boundary condition
are used.
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TABLE I. The different types of states in the system. As discussed in the text, the existen
short and long blocks distinguishes the different types of states; just blocks are insignifican

Lengths r02>0,r0150 r02.0,r01.0 r0250,r01.

r12>0,r1150 Cyclic: Intermediate Uncyclic Cyclic: Free fl
r12.0,r11.0 Uncyclic UncyclicrG may increase Uncyclic,rG may
r1250,r11.0 Cyclic: Congested Uncyclic,rG may increase Uncyclic,rG may
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is a group and definerG as the density of these groups. W
also definer01 , r02 , and r05 as the densities of long
short, and just 0 blocks, respectively, and similar symbols
the 1 blocks.

The states of the system can be divided into nine differ
categories by the existence of short and long blocks,
Table I. In the following, we will consider the three cycl
types of states separately. To verify that these are the
cyclic states we first show that the following two cases
unstable: long and short blocks of one kind,r11.0 and
r12.0, and long blocks of both kinds,r11.0 and r01

.0. The other cases follow from the same proofs by dua
First, we note that new long blocks can never form, b

cause a nonlong block of cars moves continually to the ri
and, therefore, cannot absorb other cars from the left. T
also implies that a nonlong block can only be absorbed to
already long block on the right. The duality proves the sa
for long 0 blocks. Furthermore, the length of a long blo
cannot grow, because long blocks emit just blocks wher
they can only absorb short or just blocks.

To show that the states that have both short and l
blocks of one type are unstable, consider the sequence

1x~0<m1k!z0<m1y,

where x,k, y.k, and 0<m represents a 0 block that is
either short or just. On each of thez first steps, the block 1y

absorbs one just block and emits one just block from
other end—its length remains unchanged. However, on
(z11)th step it absorbs a block of lengthx and emits a block
of length k. Therefore, the number of short blocks has d
creased by one, and the length of the long block has
creased byk2x, possibly transforming it into a just or sho
block. Mathematical induction using this argument sho
that, if all 0 blocks are short or just, then during the simu
tion, the number of either short or long 1 blocks drops
zero. The number of groups does not change in this proc
An important observation is that the long block behaves l
a decaying quasiparticle that is moving in the opposite dir
tion from the ones by continuously absorbing short or j
blocks and emitting just blocks. Naturally, applying the d
alism property proves the same for long and short 0 bloc

Next, we show that if there are both long 1 blocks a
long 0 blocks, the state is unstable. We can first apply
above property to show that either a long 1 block decays
it eventually meets a long 0 block moving in the oppos
direction ~or else there are no long 0 blocks left in the sy
tem!. But when the long blocks meet, they react and ann
late each other partially or wholly: the group
02611
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0x1y, ~2!

wherex.m andy.k, emits just 0 blocks leftwards and jus
1 blocks rightwards at each time step, reducing to

0x2m1y2k, ~3!

and increasing the number of groups by one. Therefo
eventually either the long 0 blocks, the long 1 blocks or bo
will be exhausted, which shows that the initial state is n
cyclic.

This completes the study of the uncyclic states, show
that from any initial state we will finally end up in one of th
remaining states shown in Table II. We discuss these th
cyclic types of states separately below.

It is fairly easy to see that if there are only short and ju
blocks, then the 1 blocks move in the positive direction a
the 0 blocks move in the negative direction but the num
of blocks and the distribution and relative order of the 0 a
1 blocks among themselves do not change—the state is
viously cyclic. To evaluate the flow, we first note that in su
a state each block of cars travels on each step on ave
(12r)/rG units forwards, which, when multiplied by th
density of cars yields

f5
r~12r!

rG
, r0150, r1150. ~4!

As this class of states does not correspond to either the f
flowing or the congested phase of the simpler traffic ru
R1,k andRm,1 , we term it, for want of a better name, inte
mediate.

The free-flowing states where all 0 blocks are long or j
and all 1 blocks are short or just are also simple. All the c
obviously move forwards at maximum speed and con
quently, these states are also cyclic, with

f5mr, r0250, r1150. ~5!

Applying the dualism between zeros and ones we obtain
formula

TABLE II. The three different types of cyclic states forRm,k

and the formula for the flowf in each.

Description Conditions f

Free flowing r1150, r0250 mp
Intermediate r150, r0150 r(12r)/rG

Congested r1250, r0150 k(12r)
5-3
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f5k~12r!, r0150, r1250, ~6!

for the opposite case: congested states with long or ju
blocks and short or just 0 blocks.

We can summarize the above by noting thatr and the
final rG determine the type of the cyclic state. This is b
cause the final average lengths of 0 and 1 blocks can hold
only one type of a cyclic state: in the intermediate pha
blocks must on the average be short or just whereas in
free flowing and congested phases either 0 or 1 blocks m
be long and the other blocks short or just as shown in Ta
II. Writing these conditions in terms ofr andrG allows us to
combine the above evaluations off into one surprisingly
simple formula.

Proposition 1. The average flow over a cycle in any cycl
state ofRm,k is

f5min$mr,r~12r!/rG ,k~12r!%.

The treatment of long blocks above also yields the follo
ing proposition.

Proposition 2. During evolution of the system,rG can
never decrease. It can increase only whenr01.0 andr11

.0.
These two propositions give the system its interest

characteristics: the final flow is completely determined
the final value ofrG , which in turn depends on the intricat
reactions of the long blocks.

As a direct consequence of these propositions, it
straightforward to obtain crude upper and lower limits und
both finite and infinite length~see Fig. 3!.

Proposition 3. The flow of any cyclic state~and thus the
average flow over different states! satisfies

f>min$mr,ur21/2u11/2,k~12r!%, ~7!

f<min$mr,k~12r!%, ~8!

for any 0<r<1 and any size lattice.
The lower limit is obtained through considering what

the greatest possible number of groups. For a lattice of
L, this is easily seen to be

NG, max5LS 1

2
2Ur2

1

2U D ,

which together with Proposition 1 yields the first part. T
second inequality follows directly from Proposition 1.

Whenm51 or k51, this proposition reduces to the wel
known flow formula

f5min$mr,k~12r!%,

discussed, e.g., in Ref.@7#.

IV. SIMPLE UPPER AND LOWER LIMITS
AT INFINITE LENGTH

At infinite length, we can use block probabilities

p~a1 a2 ...an!5r( i @ai51#~12r!( i uai50u, ~9!
02611
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in the initial random state in order to calculate various s
tistics. The brackets@¯# represent Iverson’s notation~p. 11
of Ref. @12#!, evaluating to 1 if the enclosed statement is tr
and to 0 otherwise.

The frequency of groups in the initial, random state
obviously given by the density of group edges

rG, initial5p~01!5r~12r! .

Proposition 2 tells us that

rG>rG, initial .

Combining these with Proposition 1 yields the important u
per limit

f<min$mr,1,k~12r!%, ~10!

which is valid forany Rm,k , as Fuks´ and Boccara observe
experimentally in Ref.@7#. The expected flow is cut off be

FIG. 3. Different limits and the exact solution for the flowf as
a function of densityr at infinite length for~a! R2,2 and ~b! R3,2.
The trivial limits are given by Eqs.~7! and~8!. Equations~11! and
~12! yield the tighter limits. The enclosed regions are shown m
nified in Fig. ~6!.
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cause the initial groups can never combine into few
groups, which limits the maximum speed of cars. We sh
show in Sec. VII that this limit is also valid for finite-lengt
systems.

This limit does not take into account the dynamics of t
system but assumes that the final state has the same nu
of groups as the initial state. It is possible to improve t
upper limit by explicitly including some cases where certa
initial configurations are known to produce new groups. F
adjacent long blocks of zeroes and ones that directly re
with each other as shown by Eqs.~2! and ~3!, we have

rG> (
x,y>1

minH F x

mG ,Fy

kG J p~10x1y0!

5(
r>0

p~0mr111kr11!

5
r~12r!

12rk~12r!m ,

which yields the tighter upper limit

f<min$mr,12rk~12r!m,k~12r!%, ~11!

when combined with Proposition 1.
A lower limit can be estimated by computing the dens

of groups that could arise by having all long blocks sp
maximally. For ones, this is

rG<(
x>1

Fx

kGp~01x0!5(
r>0

p~01kr11!5
r~12r!

12rk .

Combining with the same formula for zeroes yields

f>minˆmr, max$12rk,12~12r!m%,k~12r!‰. ~12!

Figure 3 shows the accuracy of these limits forR2,2 and
R3,2. For largerm andk, the limits become tighter, converg
ing to unity geometrically asm andk tend to infinity.

V. EFFICIENT ALGORITHM FOR COMPUTING THE
STEADY-STATE FLOW

It is not necessary to carry out the simulation to find t
number~or density! of groups in the final state, and thus th
steady-state flow. In this section, we present anO(L) algo-
rithm for finding the final number of groups from a give
starting state with periodic boundary conditions in a lattice
lengthL. This is interesting from two different perspective
first, it makes it possible to calculate the final flow for lon
strings more effectively. Additionally, it helps us to unde
stand the dynamics of the system and derive analytic res
on the behavior of the system in the next sections.

Let us define the symbols!a,b,La,b, 0a,b, and 1a,b all to
correspond to 0a1k1b1m for different a andb,

0a1k1b1m55
!a,b , a<0 and b>0,

0a,b , a.0 and b<0,

1a,b , a<0 and b.0,

La,b, a.0 and b.0.

~13!
qs.
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We represent the initial state in this notation and then ca
out a series of string replacements. The final number
groups is obtained as the initial number of symbols plus
number of extra groups created by the replacements
shown below.

Diamonds react as follows:

La,b→?a2m,b2k , Dg511, ~14!

where the wildcard symbol ? represents the correct sym
for the new indices from Eq.~13! and Dg represents the
number of new groups created by the reaction.

Stars can be collected, along with zeroes and ones,
zeroes only from the right and ones only from the left. N
new groups are created.

!a,b!c,d→!a1c,b1d , Dg50, ~15!

0a,b!c,d→?a1c,b1d , Dg50, ~16!

!a,b1c,d→?a1c,b1d , Dg50. ~17!

Finally, when a 0 and a 1 meet, it is possible to form ne
groups,

0a,b1c,d→?a1c,b1d , Dg50. ~18!

Note that new groups are not created directly by this re
tion, but the result may be aL.

The above replacements recursively evaluate the react
between long blocks. To prove the correctness of a maxi
application of the replacements, we consider the reacti
occurring in an actual simulation. As described in Sec. III,
new groups arise from the annihilations of long blocks a
the length of a long block can never grow. Thus, the num
of extra groups is dictated by the sequence of short blo
that reacting long blocks must absorb before annihilating
the following, we shall show that each of the nested ann
lations in an actual simulation is correctly represented by
string replacements.

First, consider a subsequence starting with a long 0 bl
and ending with a long 1 block with only short and ju
blocks between them. Suppose further that the long blo
are long enough to actually meet before turning into short
just blocks. Then a maximal application of Eqs.~15!–~18! to
the subsequence subtracts the total ‘‘shortness’’ of the s
blocks from the long blocks yielding a diamond symbo
which correctly represents what remains of the long bloc
when they meet. The diamond will then annihilate accord
to Eq. ~14! and yield the correct number of extra groups a
a symbol representing the remainder~either a!, if both long
blocks are completely annihilated, or a 0 or 1, if theannihi-
lation is partial!. This remainder symbol is exactly wha
would be the result of an actual simulation of the sub
quence minus the just blocks that the sequence would h
emitted from both ends. Because the just blocks do not af
long blocks outside the subsequence, they can be di
garded.

Suppose then that either long block would decay bef
meeting the other long block. Then an application of E
5-5
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~16!–~18! to the subsequence will at some point turn eith
the 0 or 1 symbol into a! ~or the whole sequence can tu
into a 0, 1, or!!. A long block at one or both ends of th
subsequence has thus turned into a just or short block, m
ing it possible for outside long blocks to react over the
maining just and short blocks of the subsequence. Again,
just blocks that a decaying long block would have emit
are disregarded as they do not affect the length or orde
other long blocks.

FIG. 4. This algorithm calculates the final number of groups
the given symbol string with periodic boundary conditions. T
symbols ?a,b are represented as pairs~a,b! and the input string is
read left to right. Addition between pairs is defined as (a,b)
1(c,d)5(a1c,b1d). Step 3 corresponds to Eq.~14! and steps 4
and 6 both corresponds to Eqs.~16! and ~18! in the text.
02611
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These are in fact all the cases that need to be conside
as the above cases can be applied recursively to the resu
inner annihilations. If neither case applies, we have found
final number of groups, because either long 0 blocks or lo
1 blocks have then been exhausted and so there cann
any other reactions in an simulation nor can the replacem
form any newL’s. On the other hand, each of the applicab
reactions will be carried out at some point of a maxim
application of the replacements, because the 0 and 1 sym
at the ends or aL do not interact with outside symbols. Th
replacements may evaluate the decay of the annihilating l
blocks in different order from the actual simulation, but
the long blocks must absorb all short blocks between th
before they can meet and the short blocks cannot disap
unless absorbed by a long block, the result is still the sa

Note that the remainder of aL may be any non-L sym-
bol, causing complicated recursion as the result of an a
hilation affects further replacements. For example, cons
the replacements

where the innermost reactions must be evaluated before
outer reactions can be considered regardless of the orde
the possible replacements.

The iteration of Eqs.~14!–~18! can be carried out by the
stack algorithm shown in Fig. 4. Each symbol of the inp
string requiresO( l ) operations to be dealt with in this algo
rithm, where l is the bit length of the symbol. This als
includes the final steps to wrap the stack. Therefore, the
ning time of this algorithm is obviouslyO(L) for a lattice of
lengthL.

The worst-case time for simply running the cellular a
tomaton simulation, on the other hand, isV(L2) since in this
system faraway cars do interact with each other. For
-
in
is
es
k

c-

-

me
es
ed.
FIG. 5. Evolution of the stack of the algo
rithm in Fig. 4 operating on the sample string
Fig. 2. In the end, the number of extra groups
the same as in Fig. 2. The doubled line signifi
the end of the input string, after which the stac
is wrapped over~cf. step 6 of the algorithm in the
Fig. 4!. The division to dropped symbols and a
tive stack is implicit—it is only significant for the
Markov model analysis of the algorithm in Ap
pendix A. The boxes depict the ‘‘lifetimes’’ of the
substacks started by each input symbol. The ti
steps of the Markov model are at the bottom lin
of these boxes, where the substacks are finish
5-6
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ample, the initial state 0m11(1k0m)T211k11 ~in the road rep-
resentation! would requireT simulation steps to reach a cy
clic state.

Figure 5 illustrates an application of the algorithm on
example string.

VI. ANALYTICAL SOLUTIONS AT THE INFINITE LIMIT

Infinite limits of systems are often easier to solve th
finite system. This is also the case withRm,k . In the Appen-
dixes, we examine the behavior of the stack machine a
rithm as the length approaches infinity. In Appendix A, w
regard the evolution of the stack configurations as a Mar
process and derive a set of equations for the stationarit
the probabilities of stack configurations. In Appendix B, w
solve these equations to determine the probabilities of dif
ent annihilations and thus the steady-state flow.

The most important results of the Appendixes are sum
rized below:

Proposition 4. The flow at infinite time for random infinite
strings in the intermediate phase isC, where 1/C is the ex-
pected number of groups arising per each input symbol
is determined by Eqs.~B9!–~B12!. The flow depends onr
only through the quantityA5(12r)mrk.

For any givenm andk, Eqs.~B9!–~B12! for A andC can
be expanded to a polynomial equation, which is easily s
to be second degree inA and at most 2(m1k)th degree inC.
In the special case ofm5k, we can solver from A in closed
form and obtain the density as a function of flow. In pract
the degree ofC seems to reduce tom1k11, and we conjec-
ture that this holds for allm andk. For example, in the cas
of m5k52, the equation can be written out as

16A218AC2236AC31~1127A!C42C550.

Proposition 5.For any givenm andk, the flow r at infi-
nite time and the densityr in the intermediate phase can b
related by a polynomial equation maximally of degree 2m
1k).

Furthermore, the phase transitions occur whereC as a
function of r crossesmr or k(12r), the flow of free flow-
ing and congested phases. For example, whenm5k52 the
phase transitions can be solved to be exactly at

r5
1

2
6

1

7 S 2&2
5

2D .

VII. UPPER LIMIT FOR STEADY-STATE FLOW
IN FINITE SYSTEMS

Carrying out calculations for finite systems is consid
ably more difficult, since the probabilities are no longer
dependent of each other. However, the following interest
limit can be derived.

Proposition 6. The average flow in steady states starti
from random binary strings of lengthL with 0,r,1 satis-
fies

f̄<minFmr,12S L
rL D 21

,k~12r!G ,

02611
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where equality applies at least whenk>L21 and m>L
21.

Proof. If 0,r,1, the number of different initial state
with a given number of groups can be counted by consid
ing different ways of placing the group boundaries on t
string. The distribution ofNG for random binary strings can
be simplified to

p~NG!55 L

NG

S rL21
NG21D S ~12r!L21

NG21 D
S L
rL D if NG.0

0 if NG<0.

Using basic binomial coefficient sum formulas~see, e.g.,
Ref. @13#! and noting thatNG cannot be zero, the expecte
value ofL/NG is

K L

NG
L 5(

NG

NGp~NG!5
1

r~12r!
F12S L

rL D 21G .
From this, the formula in the proposition follows. Finally, th
equality follows simply from the fact that if the conditio
given holds, no groups can split.

Note that with reasonableL andrL, the reciprocal of the
binomial coefficient is negligibly small compared to 1.

VIII. SIMULATIONS

Simulations were carried out to test the theoretical resu
For small L, complete summations were possible so t
simulated curves are, in fact, exact. For largeL, a number of
random initial configurations were generated and the evo
tion of the system simulated. Since the resulting steady-s
flow under Rm,k , when m.1 and k.1, depends on the
whole initial state~and not justr, as for whenm51 or k
51!, the samples so simulated will in general not have
same flow. Therefore, the standard deviation is displa
along with the average of the resulting flows, giving an id
of the strength of the fluctuations. AsL tends to infinity, the
fluctuations slowly average out, displaying the usual 1/AL
behavior for the standard deviation.

Figure 6 depicts the simulated flow and exact solution
infinite space. The theoretical solution agrees well w
simulated results. Figure 7 shows the simulated flow a
upper and lower limits for finite space. Form, k>L21 the
upper limit is exact as confirmed by the simulation.

IX. CONCLUSIONS

In this paper, we have solved the behavior of the gene
ized traffic rulesRm,k for infinite lengths of road and uni
form random initial conditions.

We have derived an efficient algorithm for computing t
average flow from an initial state under the generalized t
fic rulesRm,k . The idea behind the algorithm is an approp
ate representation of the road as a string of 0x1y blocks in-
stead of single sites. Finding the average flow can be redu
to finding the number of these blocks in the cyclic state.
5-7
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FIG. 6. Infinite-space behavio
of flow as a function of density
under~a! R2,2 and~b! R3,2. Aver-
age of 100 simulations withL
510 000, theoretical flow, and up
per and lower limits given by Eqs
~11! and ~12!.
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The algorithm works by decoupling the time from th
simulation and considering directly the different reactio
that would occur during the evolution of the system. Ana
sis of the algorithm in the infinite limit yields an exact sol
tion for the flow in an infinite space. Simulated results ag
perfectly with the analytic solution.

Finite-space behavior is more complex because sin
sites are no longer independent. We have, however, been
to obtain for the average flow a nontrivial upper limit, whic
is exact form, k>L21.
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APPENDIX A: STEADY-STATE CONDITIONS FOR THE
STACK MACHINE AT THE INFINITE LIMIT

Consider the symbols and reactions defined above in
V. All new groups are created from the diamonds, which
turn can only arise when a 0 symbol is combined with a
following 1 symbol. The algorithm in Fig. 5 uses this fact
find the final number of groups by only tracking the reactio
of 0 symbols. It scans through the input string linearly, fro
left to right, maintaining a stack of the processed symb
with all reactions of 0’s andL’s carried out. This means tha
all the remaining 0 symbols end up on top, which we sh
now call theactive partof the stack. When a non-0 inpu
symbol consumes all the 0’s we say that the symbo
dropped off from the bottom of the active stack into t
inactive part, as the symbol can no longer create new grou
with the following symbols.

In finite systems with periodic boundary conditions, t
processing of the input string is divided into two parts. Fir
the input string is scanned as above. When all of the in
has been read, the inactive part of the stack, comprisin
1’s and!’s, is reprocessed with the zeroes in the active p
since the 1’s on the bottom of the stack may react with
0’s on top, producing new groups. The relative effect of t
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FIG. 7. Finite-space behavior of the average flowf̄ as a func-
tion of density under~a! R2,2 and ~b! R7,7 when L58. All points
represent either evaluated formulas or averages calculated ov
configurations. The trivial lower limit is given by Eq.~7!. The upper
limit given by Proposition 6 is exact form, k>L21 as demon-
strated by~b!.
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wrapping diminishes as the length approaches infinity: i
easily shown that we can ignore all symbols dropped to
inactive part in the infinite limit.

To obtain the limiting flow, we thus need to evaluate t
average number of new groups produced as the stack a
rithm processes a new symbol. When new symbols are in
the active stack can either grow infinitely or remain finite.
the active stack remains finite, the probabilities of differe
active stacks will eventually reach a stationary distributio
Once the stationary distribution is known, it is straightfo
ward to calculate the expected number of new groups fo
random input symbol.

If, on the other hand, there are not enough 1’s and!’s to
annihilate the 0’s and the stack grows infinitely, we can u
the dualism property and consider the thus finite stack of
instead of 0’s. It turns out later that we do not even have
consider this dualism explicitly, as the symmetry of the eq
tions is restored in Appendix B.

Formally, we regard the evolution of the active stack a
Markov process. The Markov property is satisfied as the n
state depends only on the current state and the upcom
independently distributed random symbol. Clearly, the p
cess can reach each possible stack configuration from e
state and has a positive probability to remain in its curr
state ~the symbol!0,0!. Furthermore, given that the activ
stack will not grow infinitely, the process will return to eve
state an infinite number of times with probability one. Th
means that the Markov chain is irreducible, aperiodic, a
Harris recurrent and therefore will converge to a unique s
tionary distribution~see, e.g.,@14# or Proposition 6.3 of Ref.
@15#!.

An essential property is that the algorithm can be app
independent of the lower levels for each stacked symbol u
that substack is finished, that is, until the lowest level of
substack turns into a 1 or a!, which happens either imme
diately, if the stacked symbol is already a 1 or a!, or when
a 1 or a! on a higher level falls to the bottom level consum
ing all 0’s on the substack. This allows us to consider e
level of the active stack as the bottom of an identically d
tributed substack. The distribution is particularly interesti
when a substack is just finished. At these times the ac
stack consists of zeroes at the bottom of each substack a
the 1 or! that finishes the topmost substack~see Fig. 5!.

Supposep(?x,y) is the distribution of symbols seen on th
bottom level of the active stack at each time a substac
finished. Then, if the symbol is a 0, the same distribution
symbols will be seen on the bottom of the substack ab
that symbol. Thus, a symbol distribution defines a distrib
tion for stack configurations. Note that an arbitrary sta
distribution cannot be represented by such a symbol di
bution but it is required that the stack symbols are identica
and independently distributed and that the height of the s
is implied by the stack symbols as described above. Furt
more, even though each input symbol starts a substac
that there are the same number of time steps as there
input symbols, the substacks are finished out-of-synch w
the time steps of the algorithm. This complication, howev
is inconsequential as the expected density of new group
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each time step is still the same as the expected per sym
density.

For simplicity, we consider the input symbol distributio
pi(?x,y) to represent what remains of the symbol after init
reactions ofL symbols. This difference is only conceptu
as the algorithm would immediately carry out the initial r
actions for each input symbol anyway. It is easy to see t
the resulting distribution must still be geometric; only a co
stant is required to normalize the lack ofL’s. The normal-
ized input distribution is defined for indices in the set

Dª$~x,y!:x.2m, y.2k, @x.0#@y.0#50%

as

pi~?x,y!ª5
A~12r!xry

12A
, ~A1!

where we define the symbolA to represent the quantity

Aª~12r!mrk, ~A2!

which occurs often in the formulas below. This quantity
the initial probability of aL, and the initial reactions pro
duce a density ofA/(12A) new groups~cf. Sec. IV!. Here
and in the following, we use densities relative to the init
symbol density 1 in the string of symbols.

In our model the initial stack distribution is defined b
p(•ut50)ªpi(•) corresponding to the distribution of stack
that results from running the algorithm on random input un
the first non-0 symbol is stacked in, i.e., the first time
substack is finished~cf. Fig. 5!.

The transition from a symbol distributionp(•ut) to the
distribution p(•ut11) on next time step can be defined b
considering the possible ways for a given symbol to arise
each level of the stack: A symbol can be the result of a 0
a non-0 above it reacting as per Eqs.~16! and ~18!. The
reaction will result in a non-L symbol ?x,y with probability

pc~?x,yut !5 (
a,x;a<0

(
b<0

p~0x2a,but !p~?a,y2but !.

If, on the other hand, the result of the reaction is a diamo
it will further react, possibly several times, according to E
~14! and yield ?x,y , where (x,y)PD, with probability

pd~?x,yut !5(
r>1

(
a<0

(
b<0

p~0x2a1rm,but !p~1a,y2b1rkut !.

In case there is another 0 on top of a 0x,y , no reactions will
occur and the 0x,y remains for the next time step. Finally,
the symbol is not a 0, it falls off from the bottom of th
substack and is replaced by a fresh symbol from the in
distribution. Thus, the transition function can be written a
5-9
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FIG. 8. The possible index combinations fo
different symbols in the Markov model for th
algorithm discussed in Appendix A. By conside
ing the possible outcomes of combined 0 a
non-0 symbols, it can be seen that the parent
sized symbols cannot occur. The setsD and E
defined in Appendix A are depicted by the diffe
ent shadings. The marked sequences are re
sented by the generating functionsF12m(z) and
F1(z) discussed in Appendix B.
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p~?x,yut11!5@~x,y!PD#pd~?x,yut !1@~x,y!PE#pc~?x,yut !

1@x.0#p~?x,yut !p~0ut !

1„12p~0ut !…pi~?x,y!. ~A3!

wherep(0ut) denotes the total probability of 0 symbols an
the setE is defined as the complement of diamonds,

Eª$~x,y!:@x.0#@y.0#50%.

Note that the transition function does not define a Mark
chain for symbols but it implicitly defines a linear Marko
operator for the subspace of stack distributions that are
termined by symbol distributions.

The stack distribution defined by a symbol distribution
stationary when

p~?x,yut11!5p~?x,yut !. ~A4!

Thus, we need to find a symbol distributionp(?x,y) corre-
sponding to the unique stationary stack distribution. T
symbol distribution can then be used to determine proba
ties for different reactions.

Figure 8 represents the possible indices for different st
symbols. It is easy to see why some symbols cannot occu
all, but even more can be said. The distribution of the st
symbols retains some of the geometric properties of the in
distribution. The distribution of 0 symbols is geometric in
x index and the distribution of 1 symbols is geometric in
y index.@The distribution of ?x,y is in fact geometric iny for
all (x,y)PD.# This can be justified by noting that two suc
symbols result from the same set of paths of the process
the corresponding difference only inx or y index of one
specific input symbol~for 0’s the initial 0 starting the sub
stack and for 1’s, the final 1 that falls through to the botto
of the sub-stack!. These properties are listed below:

p~?x,y!50, x<2m,

p~Lx,y!50, x.0,y.0,

p~0x,y!5~12r!x21p~01,y!, x.0,y<0, ~A5!

p~1x,y!5ry21p~1x,1!, x<0,y.0.
02611
v

e-

e
i-

k
at
k
ut

ith

For a more rigorous proof, it is easy to check that the init
distributionpi(•) has these properties and that the transit
function maintains the properties. Thus, the limiting statio
ary distribution must also have the properties.

The stationarity recurrence given by Eqs.~A3! and ~A4!
can be transformed to

$12@x.0#p~0!%p~?x,y!

@12p~0!#~12r!xry

5
@~x,y!PD#pd~?x,y!

@12p~0!#~12r!xry 1
@~x,y!PE#pc~?x,y!

@12p~0!#~12r!xry

1
pi~?x,y!

~12r!xry . ~A6!

For clarity, we definef x,y as the left side of the equation,

f x,yª~12r!2xr2y
12@x.0#p~0!

12p~0!
p~?x,y!. ~A7!

This transformation ofp(•) cancels out the geometric facto
and will decouple the recursivep(0) coefficient from the
stationarity equation. The transformation is reversible
p(0) can be obtained in terms off x,y from

p~0!5 (
x.0;y

p~0x,y!5 (
x.0;y

~12r!xryf x,y . ~A8!

With this definition, the geometric properties reduce to

f x,y5 f x,1 , x<0, y.0,

f x,y5 f 1,y , x.0, y<0. ~A9!

We define analogously the componentsdx,y and cx,y corre-
sponding to terms on the right side of Eq.~A6! and apply the
definition of f x,y and the above properties,

dx,yª~12r!2xr2y
pd~?x,y!

12p~0!

5(
r>1

Ar (
a<0

(
b<0

f x2a1rm,bf a,y2b1rk

5
A

12A (
a<0

(
b<0

f 1,bf a,1 ,

for (x,y)PD, and
5-10
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cx,yª~12r!2xr2y
rc~?x,y!

12r~0!

5 (
a<0

(
b<0

f x2a,bf a,y2b5 (
a<0

(
b<0

f 1,bf a,y2b ,

for (x,y)PE. The stationarity condition given in Eq.~A6!
can then be expanded as

f x,y5@~x,y!PD#dx,y1@~x,y!PE#cx,y

1~12r!2xr2ypi~?x,y!

5@~x,y!PD#
A

12A (
a

(
b

f 1,bf a,1

1@~x,y!PE# (
a,x;a<0

(
b

f 1,bf a,y2b

1@~x,y!PD#
A

12A
,

where we have left out the summation limits for zero term
based onf a,b50 for a.0 andb.0.

Noting that only the middle line really depends onx andy
and thatf a,b50 for a,2m, the recurrence can be written a

f x,y5@~x,y!PD#
A

C
1 (

a,x;a<0
(

b
f 1,bf a,y2b

2@x.0#@y.0#S 12A

C
21D , ~A10!

where we define

Cª

A

f 12m,1
5

12A

(
a

(
b

f 1,bf a,111

, ~A11!

for reasons to become clear later.
We have thus reduced the stationarity of the stack dis

bution given by Eqs.~A3! and~A4! to the above convolution
equation, wheref x,y determinesp(?x,y) and is given by Eq.
~A7!.

APPENDIX B: EXACT SOLUTION FOR THE STEADY-
STATE FLOW THROUGH GENERATING

FUNCTIONS

The convolution recurrence in Eq.~A10!, which is the
stationarity condition for the stack distributions, can
solved using generating functions~cf. @13#!. We define a for-
mal generating functionFx(z) for the sequencef x , by

Fx~z!ª(
y

f x,yz
y. ~B1!

This generating function is not quite ordinary: the sum go
over all y, positive and negative. In general the values o
generating function do not uniquely determine a seque
02611
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that is positive at an infinite distance in both directions. He
however, we know that bothF1(z) and F12m(z) are
uniquely defined generating functions, because whenx51
2m, the termf x,y is only positive at an infinite distance i
the positivey direction and whenx51, it is only positive at
an infinite distance in the negativey direction ~see Fig. 8!.
The coefficients for the functions for otherx are positive
infinitely in both the positive and negativey direction but
they are only used in the following calculations for form
multiplication and addition operations corresponding to we
defined convolution and sum operations on sequences.

The term f x,y given by Eq.~A10! vanishes forx<2m.
Thus, we can represent it by the first nonzero casef 12m,y
5@y>12k#A/C, and the differences

f x,y2 f x21,y5@x<1#(
b

f 1,bf x21,y2b2@x51#@y.0#
12C

C
,

~B2!

for x.12m. With the generating function notation we hav
F12m(z)5(A/C)z12k/(12z) and

Fx~z!2Fx21~z!5F1~z!Fx21~z!2
12C

C

@x51#z

12z
,

for 12m,x<1. Thus,

Fx~z!5@F1~z!11#x1m21F12m~z!2
12C

C

@x51#z

12z
,

~B3!

for 2m,x<1. Thus, if we can solveF1(z) andC, we have
determinedFx(z) for all x, becauseC determinesF12m(z).

For x51, Eq. ~B3! can be written as

@F1~z!11#5@F1~z!11#m
Az12k

C~12z!
2

z2C

C~12z!
, ~B4!

which is anmth degree equation with respect tobªF1(z)
11. It is easy to see that there are at most two positive
solutions forb.

Because we can solveF1(z) given C, the complete solu-
tion for the stationary distribution of the stack configuratio
and therebyf now hinges on determiningC. Unfortunately,
the quantityC cannot be solved directly from the abov
equations, since its definition is already used in solv
them; equations relatingC and F1(z) reduce to identities
when combined with Eq.~B4!.

However, there is a different, strange approach: we
determineC from the requirement thatF1(z) must ~indi-
rectly! represent a probability distribution. The correctF1(z)
must obviously be analytic for some regionuzu.r . Addition-
ally, it must be positive and decreasing inz, because it has
nonzero coefficients only for nonpositive exponents ofz, and
all coefficients must be non-negative since they are pr
abilities multiplied by a positive function of the index. Thes
two constraints allow us to uniquely determineC in the fol-
lowing.

Equation~B4! can be solved with respect toC as
5-11
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FIG. 9. Plots of the real solutionsb
5F1(1/a)11 of the generating function equa
tion ~B6! at r51/2 for C below, at, and above the
correctf for ~a! R2,2 and~b! R3,2. Becauseb is
an ordinary generating function for a sequence
positive values, the correct solution and all i
derivatives must be positive. Furthermore, b
causea51/r corresponds to a sum of probabil
ties, b must converge at least foruau<1/r. This
excludes too large values ofC. For too small val-
ues, the lower curve continues below 1 yieldin
negative probabilities and the upper curve is n
feasible either, because it is decreasing
a51/r. Only the singular curve at the correctC
yields an admissible solution. Because Eq.~B6!
is symmetric with respect to (a,k) and (b,m),
the solutions have symmetry axisa5b when
m5k.
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C5
bmAz12k2z

~12z!b21
, ~B5!

@note thatb5F1(z)11 depends onz#. Substitutingaª1/z
in this equation yields a perfectly symmetric form

C5
Aakbm21

ab2a2b
. ~B6!

Figure 9 depicts the solutions of Eq.~B6! with different val-
ues ofC for R2,2 andR3,2. The figures are essentially simila
for largerm andk with at most two positive solutions and i
addition one everywhere negative solution ifm is odd. In
either case, it can be seen that a too large value ofC results
to a gap in the solution and a too small value results to ei
a nonmonotonous or a nonpositive solution. Only the corr
C allows changing branches in the singularity point to obt
a feasible solution. This is analogous to the singular beha
of elliptic curves~cf. @16#!.

Because the surfaceC(a,b) is smooth, the two
constant-C contours can only cross at a critical point. Th
critical points¹C(a,b)50 are determined by the equation

Akak21bm~ab2a2b!2~Aakbm21!~b21!50,
Amakbm21~ab2a2b!2~Aakbm21!~a21!50.

Multiplying by (a21) and2(b21) and adding, the equa
tions yield k(a21)b5m(b21)a. Changing variables to
a5(a21)/(ma) andb5(b21)/(kb) yields a simple form
a5b for the equation. Substitutinga51/(12am) and b
51/(12ak) to the critical point equations and to Eq.~B6!
results in

A~12am!2k~12ak!2m5
a

12a~k1m21!
,

A~12am!2k~12ak!2m512C
12a~k1m!

~12ak!~12am!
. ~B7!
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Now, we only need to reducea from this system and then w
have an equation relating the unknownC to the parameters
A, m, andk. By eliminating the left sides we obtain from th
right sides eithera51/(k1m) corresponding to a pole o
Eq. ~B6! or

C@12a~k1m21!#5~12ak!~12am!. ~B8!

This is a second degree equation fora and its smaller solu-
tion is

a5
11~12C!~k1m21!2c

2km
, ~B9!

where we define

cªA@11~12C!~k1m21!#224~12C!km. ~B10!

Note that the other solution with1c in Eq. ~B9! does not
yield a critical point.

Now Eq. ~B8! can be used to rewrite the first equation
Eq. ~B7! as

A5Ca~12am!k21~12ak!m21 ~B11!

5Cka@12a~k1m21!#k21~12ak!m2k, ~B12!

yielding A as a function ofC in closed form with the solution
of a given by Eq.~B9!.

Now that we have determined all variables, we can de
mine probabilities for different reactions. The density of ne
groups on the bottom level of the active stack is
5-12
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rDg5 (
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When all levels of the stack are taken into account, the t
density of new groups is
-

02611
al

rDg„11p~0!1p~0!21¯…5
1

C
2

1

12A
.

Adding in the initial density 1 and the density of group
arising from the initial reactions yields the final group de
sity relative to the initial group density:
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Thus, in the intermediate phase,f5C.
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